Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 6(3)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438534

RESUMO

Blood-derived autologous products are frequently used in both human and equine medicine to treat musculoskeletal disorders. These products, especially the platelet-rich plasma (PRP), may contain high concentrations of growth factors (GFs), and thus improve healing in several tissues. Nevertheless, the procedures for preparation of PRP are currently non-standardized. Several protocols, which are based on distinct centrifugation patterns (rotation speed and time), result in PRPs with different characteristics, concerning platelet and GFs concentrations, as well as platelet activation. The aim of the present study was to compare two different protocols for PRP preparation: protocol (A) that is based on a single-centrifugation step; protocol (B), which included two sequential centrifugation steps (double-centrifugation). The results here reported show that the double-centrifugation protocol resulted in higher platelet concentration, while leukocytes were not concentrated by this procedure. Although platelet activation and aggregation were increased in this protocol in comparison to the single-centrifugation one, the TGF-ß1 concentration was also higher. Pearson's correlation coefficients gave a significant, positive correlation between the platelet counts and TGF-ß1 concentration. In conclusion, although the double-centrifugation protocol caused premature platelet aggregation, it seems to be an effective method for preparation of PRP with high platelet and TGF-ß1 concentrations.

2.
Biochimie ; 135: 72-81, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28115185

RESUMO

Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbß3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbß3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS473, ERK1/2, and p38 MAPK, and to Ca2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbß3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis.


Assuntos
Difosfato de Adenosina/farmacologia , Calicreína Plasmática/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Biol Chem ; 395(9): 1027-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25153385

RESUMO

Arterial thrombosis is an important complication of diabetes and cancer, being an important target for therapeutic intervention. Crataeva tapia bark lectin (CrataBL) has been previously shown to have hypoglycemiant effect and also to induce cancer cell apoptosis. It also showed inhibitory activity against Factor Xa (Kiapp=8.6 µm). In the present study, we evaluated the anti-thrombotic properties of CrataBL in arterial thrombosis model. CrataBL prolongs the activated partial thromboplastin time on human and mouse plasma, and it impairs the heparin-induced potentiation of antithrombin III and heparin-induced platelet activation in the presence of low-dose ADP. It is likely that the dense track of positive charge on CrataBL surface competes with the heparin ability to bind to antithrombin III and to stimulate platelets. In the photochemically induced thrombosis model in mice, in the groups treated with 1.25, 5.0, or 10 mg/kg CrataBL, prior to the thrombus induction, the time of total artery occlusion was prolonged by 33.38%, 65%, and 66.11%, respectively, relative to the time of the control group. In contrast to heparin, the bleeding time in CrataBL-treated mice was no longer than in the control. In conclusion, CrataBL was effective in blocking coagulation and arterial thrombus formation, without increasing bleeding time.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia , Lectinas de Plantas/farmacologia , Trombose/patologia , Animais , Capparaceae/química , Artérias Carótidas/efeitos dos fármacos , Cromatografia de Afinidade , Modelos Animais de Doenças , Humanos , Hidrólise/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Tempo de Tromboplastina Parcial , Agregação Plaquetária/efeitos dos fármacos , Tempo de Protrombina , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sefarose/análogos & derivados , Sefarose/química , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...